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ABSTRACT 
When designing a new product family, designers and 
manufacturers have to define both the product 
structure and its supply chain simultaneously. This 
leads to a complex optimization problem to solve in 
order to satisfy diversified customer requirements 
involving various options and variants. Furthermore, 
we must know the bill of materials for each product 
to evaluate production and transportation costs, 
which means that rapid methods for building bills of 
material are crucial. Our paper addresses this 
problem, which consists in selecting a set of modules 
to be manufactured at distant facilities and shipped 
to a nearby plant for a final assembly operation 
within a specified amount of time. The objective is a 
set of modules capable of defining the bill of 
materials for each finished product which will 
minimize production costs. Two fast heuristics are 
proposed to solve it. Experiments on small instances 
enable us to compare our results with optimal 
solutions, and experiments on larger instances 
enable us to compare the performance of the two 
heuristics. 
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1. INTRODUCTION  
Nowadays, the growing demand for customized 
products involves an increasing number of product 
variants and options, and, consequently, a complex 

product diversity to manage. This variety must be 
controlled in terms of product, process, and supply 
chain costs, as well as customer lead time. Moreover, 
when designing a new product family, a consistent 
approach is necessary in order to quickly define a set 
of variants and the relevant supply chain with a view 
to ensuring customer satisfaction and minimizing the 
total investment and operating costs of the global 
supply chain (Lamothe, J. et al., 2006). 

A product family is composed of similar products 
which differ in some characteristics, such as options. 
For example, a basic car model may offer only a few 
options in order to minimize the base price. Options 
can then be added to this basic model, like air-
conditioning, an automatic gear box, a diesel engine, 
and so on. 

There are two extreme production strategies that a 
company can use to achieve this. The first is to stock 
all the various products, which involves selecting a 
minimum set of standardized products (Briant, O., 
Naddef, D., 2004), which could include 
supplementary options to meet diverse customer 
requirements. However, a product may contain 
options which are not required by the customer. The 
second strategy is to produce only when an order is 
received. In this case, the lead time may be higher, 
resulting in a failure to satisfy the customer. An 
intermediate strategy would be to manufacture pre-
assembly components, called modules, for stock and 
then assemble them when an order is received. The 
advantage of such a strategy is to reduce the lead 
time and to permit broad product diversity for 
customers at limited cost to the company. 
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In this paper, we explore a production policy in 
which modules are manufactured at distant facilities 
to minimize costs. Those modules are then shipped 
and assembled at a nearby facility in order to ensure 
a short lead time for the customer. We present two 
heuristic strategies to define the bill of materials of 
each finished product: (1) look at the finished 
product set and determine the most suitable bill of 
materials for each product; and (2) look at the 
module set and select the components of most 
interest, inserting them into the bill of materials of 
compatible finished products.  

This work will be helpful for exploring further 
research on the module assignment problem. In fact, 
rapidly determining the bill of materials for the 
product family will make it possible to investigate 
various procedures to influence what modules are 
stored at the distant facility. This is achieved either 
by improving the current heuristics in order to take 
into account the assignment constraints, or by 
introducing new, specific heuristics which take the 
resulting modules and assign them to minimize 
logistical costs.   

The literature proposes various approaches to the 
design of product families. Some product design 
methodologies focus on product architecture 
(Dahmus, J. B. et al., 2001; Jiao, J. and Tseng, M., 
1999). This approach is supported to advantage by 
modular design (Hung, C. C., Kusiak, A., 1998), 
component/product/process standardization (Kota, S. 
et al., 2000; Lee, H. L., Tang, C. S., 1997;   
Thonemann, U. W., Brandeau, M., 2000). Other 
methodologies concentrate on process 
standardization (Lee, H. L., Tang, C. S., 1997), 
process resequencing (Lee, H. L., 1996), or generic 
assembly routing (Gupta, S., Krishnan, V., 1998; He, 
D. W., Kusiak, A., 1997).  

In all this work, product, process, and supply chain 
designs are integrated two by two. However, some 
recent work explores a global design modeling 
approach. Agard, B. et al., (2006), for example, 
propose a genetic algorithm to minimize the mean 
finished product assembly times for a given demand. 
Agard, B. and Penz, B. (2007) propose a model for 
minimizing module production costs and a solution 
approach based on simulated annealing. Lamothe, J. 
et al., (2006) use a generic bill of materials 
representation in order to identify the best bill of 
materials for each product and the optimal structure 
of the associated supply chain simultaneously. 

In section 2, a more detailed description of the 
problem is given and an Integer Linear Program 
model is proposed. Section 3 is devoted to the 
description of the two heuristic strategies. Some 
computational experiments are presented and 
analyzed in section 4. Finally, concluding remarks 
and perspectives are provided in section 5. 

2. THE PROBLEM  
Consider the following industrial context: a producer 
receives customer orders for finished products 
containing options and variants. Each individual 
product is then manufactured from a set of modules, 
the components which come from a number of 
suppliers (El Hadj Khalaf, R. et al., 2008).  

Consider now that the producer has only a short time 
(T) in which to respond to customer demands, and 
this is less than the time required to assemble 
products from elementary components. In addition to 
this, the producer has to provide the product 
precisely according to customer demands (without 
extra options). This constraint comes from technical 
considerations, or is simply a means to avoid 
supplementary costs. 

To satisfy the customers, the producer brings in pre-
assembled components, called modules, from many 
suppliers located at facilities around the world whose 
production costs are low. The modules are then 
assembled at the producer’s facility, which is 
assumed to be close to the customers, and so be able 
to react very quickly and offer a reduced lead time. 
Our problem is to define a bill of materials for each 
finished product which will minimize total assembly 
costs. 

The problem is based on the assumption that a 
product or a module is considered to embody the set 
of functions that represents the requirements of the 
customer, so we assume that: 

• a function Fk, is a requirement that must be 
met by the finished product; 

• a module Mj is an assembly of functions that 
could be added to other modules to make up 
a finished product; 

• a finished product Pi is an assembly of 
modules that corresponds exactly to at least 
one customer demand. 

Let us introduce the following notations: 



 

 

• F = {F1,...,Fq}: a set of q functions which can 
appear in both finished products and 
modules. 

• P = {P1,...,Pn}: a set of n possible finished 
products which may be demanded by at least 
one customer. We note Di is the estimated 
demand of the product Pi during the life 
cycle of the product family. 

• M = {M1,...,Mm}: a set of m possible 
modules. 

• CFj: the fixed cost to management of module 
Mj at the nearby facility. 

• CVj: the variable cost of assembly of module 
Mj at the nearby facility. 

• wj: the time required to assemble module Mj 
in a finished product (which is fixed to 1 
time unit for all modules). 

• T: the time available to assemble a finished 
product from the modules. 

• WhPi, WhMj: the weights of product Pi and 
module Mj respectively (which represent the 
number of existing functions in a product or 
module). 

Under these assumptions, a product (or module) can 
be represented by a binary vector of size q. Each 
element shows whether the corresponding function is 
required in the product (value = 1) or not (value = 0). 

The set M contains m modules. These may consist of 
either a selection of the modules defined at the 
engineering stage, or of the modules resulted from all 
the possible combinations of the function set. 

The problem now is to determine the subset M’'∈  M, 
of minimum cost, such that all products in P can be 
built in a constrained time window T with elements 
from M'. Concerning the products, the goal is to 
determine which bill of materials is the most suitable 
(Figure 1). 

 

 

 

 

 

 

 

The following model uses an Integer Linear Program 
formulation. Our objective is to minimize the costs 
associated with the producer activity. These costs are 
as follows: fixed costs related to module 
management at the nearby facility and module 
assembly costs at the nearby facility. 
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where Xij = 1, if module Mj is used in the bill of 
materials of product Pi, 0 otherwise; Yj = 1, if module 
Mj is selected (belongs to M', the set of produced 
modules), 0 otherwise; A is the binary matrix, 
column j of which is the vector Mj; Xj is the column 
vector composed of the variables Xij. 

The objective function minimizes the costs incurred 

at the nearby facility, where ∑
=

n

i
iji XD

1
) (  is the total 

need of module Mj. 

Constraint (1) shows that a finished product Pi must 
be assembled precisely according to customer 
requirements. Constraint (2) indicates that products 
must be assembled within the time window T in 
order to respect the delivery time. Constraint (3) 
translates the relation between the Xij and Yj 
variables. If a module is used in the bill of materials 
of some products, then it belongs to M'. 

The problem described here involves the set-
partitioning problem, which enables us to conclude 
that it is NP-hard in the strong sense of the term 
(Garey, M.R. and Johnson, D. S., 1979).  

3. HEURISTIC DESCRIPTION 

3.1. The product-building heuristic 
(PBH) 

The main idea behind this heuristic is to assign an 
index to each module. The value of the index is high 
when the module is attractive, i.e. the module can be 

Figure 1 Alternative bills of materials 
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included in many products and its cost is low. Then, 
we determine the bill of materials of the products one 
by one (by solving the MIP), in such a way as to 
maximize the sum of the indices of a product’s 
components. At this point, the problem described 
above is solved at each iteration, but for one finished 
product at a time. 

The indices are as follows: 
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100)(2    

and ji ↔ means that product Pi is compatible with 
module Mj  (Mj does not contain a function which 
does not exist in Pi). In this case, the term ∑

↔ ji
iD  

represents the needs of module Mj if it is used in the 
remaining compatible products at iteration k. 

As soon as a module is compatible with the finished 
products, F2 becomes bigger, and so this index 
favors modules which are compatible with many 
finished products. 

Two different functions F3 are used: 
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This function favors small modules, which is 
necessary when the cost configuration is such that the 
total fixed costs are higher than the total variable 
costs. In such a case, it is better to select small 
modules because they are compatible with many 
more products, and using them leads to a solution 
with a small number of modules.  This reduces the 
fixed costs, which represent the greater part of the 
objective function (El Hadj Khalaf, R. et al., 2008). 
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This function favors relatively large modules, which 
is necessary when the cost configuration is such that 
the total variable costs are higher than the total fixed 

costs. In such a case, using large modules makes it 
possible to have a small value of requirements 
(because large modules are not compatible with 
many finished products). This reduces the total 
variable costs, which represent the greater part of the 
objective function. 

Since the ratio between fixed and variable costs is 
not known in advance, this heuristic is tested with 
both functions F3. Moreover, to improve this 
heuristic, finished products are sorted by increasing 
(and decreasing) order of their weights. 

3.2. The module-selecting heuristic 
(MSH) 

This heuristic is quite simple, the idea behind it being 
to select the module having the smallest value of 
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materials of compatible finished products. 

To improve this heuristic, we first determine, at each 
iteration k, the ideal weight of the module to be 
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WhPik the weight of the remaining functions of 
product Pi at iteration k which are not yet covered, 
and with Wik = T - W0ik, where W0ik is the number of 
modules inserted into the bill of materials of product 
Pi up to iteration k, and nk is the number of remaining 
products at iteration k (those that still have an 
incomplete bill of materials). 

This operation is aimed at avoiding the selection of 
unitary modules (those with a weight of 1) at the 
beginning, which has been proved to damage the 
quality of the solution: if unitary modules are 
selected and T is small, then, at certain iterations 
(when T-1 modules have been inserted in previous 
iterations), it is necessary to complete the bill of 
materials for products having WhPi > T with a large 
module which is not necessarily compatible with 
other products. If T is small, then selecting unitary 
modules at early iterations leads to a solution which 
contains many modules, because many of them are 
large and they are used in only one or two bills of 
materials. Such solutions generate very high fixed 
costs, and consequently a larger objective function. 

So, we can summarize this heuristic as follows at 
iteration k (note that Pik are the remaining functions 
of product Pi that are not covered by the modules 
inserted in its bill of materials before iteration k):   



 

 

1. Calculate the ideal weight Whk of the module 
to be selected, with WhP i1 = WhPi and n1 = 
n, and Wi1 = T and Pi1 = Pi 

2. Select the module Mj, the weight of which is 
equal to Whk having the smallest value of 

∑
↔

+
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ijj DCVCF  (i represents the products 

Pik compatible with Mj). 

3. Insert the module selected into the bill of 
materials of compatible finished products. 

4. For these compatible products, update the 
product code: Pik = Pi(k-1) – Mj  

5. Also, update Wik = Wi(k-1) -1,  which 
represents the maximum number of modules 
that can be inserted into product Pik. 

6. For products having Wik = 1, complete their 
bill of materials with the only compatible 
module. 

7. Repeat these steps until all the bills of 
materials have been constructed. 

4. COMPUTATIONAL EXPERIMENTS 

4.1. Datasets and experimental 
conditions 

Ten randomly generated small instances for five 
different sizes are used; { }13,12 ,11 ,10 ,8∈q on 
which the module set, the finished product set, the 
demand Di, the assembly operating times wj, the 
minimum number of functions per product Minf, and 
the maximum number of functions per product Maxf 
were fixed. Table (1) summarizes the various 
parameters for each instance size. 

The demand Di of a product Pi is a decreasing 
function on the product function number. This means 
that, as soon as the finished product contains more 
options, then the demand for it becomes less than if it 
had only a few options. The assembly operating 
times wj were fixed to 1, so that constraint (2) results 

in a limitation on the number of modules in a bill of 
materials. 

In order to simplify the problem data, the following 
rules are imposed on the various costs: 

• ( )( )1λα += jj qfCF  

• ( )( )2λβ += jj qfCV  

where qj is the number of existing functions in 
module Mj; f is the square-root 
function jj qqf =)( , this function representing the 
relation between costs and qj better than the identity 
and square functions (El Hadj Khalaf, R. et al., 
2008); α, β are coefficients used to scan different cost 
configurations; and λ1, λ2 are jamming factors.  

For each instance size, three cost files are generated 
by the method described above. The aim is to scan 
different cases of the ratio between fixed and variable 
costs. 

Table 2 gives the values assigned to α and β for each 
cost. For cost 1, the fixed costs predominate over the 
variable costs, while for cost 2, the two costs are 
almost equivalent, and for cost 3, the variable costs 
predominate. 

 Also, %12,%8 21 ≤≤ λλ . For the tests, T was 
varied from Minf to Maxf. The heuristics were then 
tested on all instances and all costs. Finally, the mean 
of the ten instance objective values was recorded for 
the comparison analyses. 

 

4.2. Result analyses 
The first objective was to compare the heuristic 
results with optimal solutions. The heuristics were 
tested on an instance of size eight (q = 8), for which 
the optimal solutions are known (El Hadj Khalaf, R. 
et al., 2008). Table 3 shows the gap rate between the 
heuristic results and the optimal solutions for the 
three cost structures. 

 

q 8 10 11 12 13 

m 255 1023 2047 4095 8191 

n 30 40 60 80 100 

Minf 3 3 3 4 4 

Maxf 6 7 8 8 9 

Table 1 Instance parameters 

Cost 1 2 3 

α 1000 240 100 

β 0.10 0.40 0.50 

Table 2 Cost Configurations 



 

A first reading of these results shows that the MSH 
heuristic is better than the PBH one. However, it can 
be noted that both heuristics run well for medium and 
high values of T, and especially for cost 2 and cost 3, 
that is, when fixed assembly costs are not greater 
than the variable assembly costs. This indicates that 
these heuristics optimize variable costs well. 

Our second objective was to test the two heuristics 
on relatively large instances, in order to compare 
their performance for larger problems. We achieved 
this with the tests on sizes 10, 11, 12, and 13. 

Figures 2, 3, and 4 show the gap rate (as a 
percentage) between the results of the product-
building heuristic and the module -selecting heuristic 
(the objective MSH value is considered as the 
reference value). 

 

 

 

These figures confirm the result obtained for q=8, 
which is that the MSH is much better than the PBH, 
and this is true for all sizes, delays, and costs. Also 
note that the gap rate increases as the problem size 
increases. In such a case, the gap rate for q=13 is 
generally greater than the gap rate for q=12, and so 
on. 

Furthermore, the gap rates are generally larger for 
cost 1 than for cost 2, and for cost 2 than for cost 3. 
This indicates that the MSH optimizes fixed costs 
more efficiently than the PBH. 

Finally, Figure 5 shows the computational time of the 
PBH for q=13. This figure indicates that the PBH is 
much more time-consuming than the MSH, which 
takes an average of one second per instance for all 
sizes (which is very quick). Now, the PBH needs 
more computational time as the size of the problem 
increases (an average of 200 seconds for q=12). This 
is expected because: (1) the PBH tests two indicators 
with two sorting methods (four combinations), and 
especially because (2) it uses Cplex to determine the 

T 3 4 5 6 

PBH 54% 28% 8% 0% 

C
os
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MSH 29% 9% 11.5% 0% 

PBH 35% 19% 7% 0% 

C
os

t 2
 

MSH 15% 2.2% 2.4% 0% 

PBH 25% 16% 12% 7% 

C
os

t 3
 

MSH 9% 2.8% 4.3% 7% 

Table 3 Gap rate between heuristic results and optimal 
solutions for q = 8 

-10

0

10

20

30

40

50

60

70

3 4 5 6 7 8 9

T

ga
p 

ra
te

q=10
q=11
q=12
q=13

 

Figure 2 Gap rate between PBH & MSH for cost 1 

0

5

10

15

20

25

30

35

3 4 5 6 7 8 9

T

ga
p 

ra
te

q=10
q=11
q=12
q=13

 

Figure 3 Gap rate between PBH & MSH for cost 2
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Figure 4 Gap rate between PBH & MSH for cost 3 



 

 

product bill of materials, which requires much more 
time. 

 

Finally, Table 4 shows the gap rate (as a percentage) 
between the MSH results and the problem’s linear 
relaxation results for each problem size, cost file, and 
delivery time. 

This shows that the gap rate is quite reasonable for 
medium and large values of T, possibly reaching 0% 
in some cases (when T = Maxf). However, for small 
values of T, it becomes huge. With small values of T, 
finding an optimal bill of materials for each product 
is much more difficult, because of constraint (2). It 
takes much more time for Cplex to reach the optimal 
solution. 

Again, the gap rate is greater (for small delays) for 
cost 1 than it is for the other costs. We can hope that 
the MSH will provide relatively good solutions for 
cost configurations on which fixed assembly costs do 
not predominate over variable assembly costs. 

5. CONCLUSION 
This paper has been devoted to a difficult industrial 
problem which arises when companies try to offer a 
large variety of products to consumers. In this 
problem, the process of selection of components 
(modules) has to be efficient. The modules are 
produced for stock and used at the final stage of 
production, which is on the assembly line. Several 
authors have considered this problem based on 
different assumptions: for example, a function can 
appear twice in a final product, or a final product can 
be substituted by another one containing more 
functions - but few papers consider the problem in 

which a final product must correspond exactly to the 
product ordered by the customer. 

We have focused on the assembly operation and tried 
to determine an efficient set of modules which would 
allow all products to be assembled, while at the same 
time avoiding function redundancy and respecting 
the delivery time. The objective function consists in 
optimizing the costs incurred during the production 
activity. 

Two heuristics were analyzed: the first determining 
the bill of materials of finished products one by one, 
by fixing attractive indices for each module; and the 
other determining the ideal module verifying the 
selection criteria and inserting that module into the 
bill of materials of compatible finished products. 

Next to computational speed, the MSH strategy is 
revealed by the tests to be the one that gives by far 
the best results. This can be explained by the 
difficulty in finding good module indices, and 
especially by the problem structure, in which 
solutions must take into account the interactions 
between finished products. This constraint makes it 
very difficult to determine one product’s bill of 
materials independently of those of other products. 
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Figure 5 Computational time of the PBH for q = 13 

 T 

q Cost 3 4 5 6 7 8 9 

1 130 65 28 17 0   

2 65 24 8 4 1.4   

10 

3 36 16.7 12.8 15.7 19.4   

1 197 105 39 19 11 0  

2 89 33.7 12 6.4 5.9 6  

11 

3 47 22.6 16.3 17.9 22.7 26.9  

1  141 73 24.4 15.1 0  

2  44.8 18.4 9.3 9.3 11.5  

12 

3  28.5 19.8 21 25.4 33.8  

1  202 110 31.3 20.4 16.5 0 

2  64.2 27.2 11.8 10.3 11.2 15.1 

13 

3  36.1 23.4 22.2 25.8 30.6 38.8 

Table 4 Gap rate between MSH results and linear 
relaxation results 



 

Finally, the MSH results encourage us to use this 
heuristic as an initial solution for a metaheuristic 
resolution in the future.  It would also be interesting 
to improve this heuristic to take into account the 
logistical chain phase.  
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