

GREEDY HEURISTICS FOR DETERMINING A PRODUCT FAMILY BILL OF
MATERIALS

Radwan El Hadj Khalaf
G-SCOP, Grenoble INP -- CNRS -- UJF

France
radwan.el-hadj-khalaf@g-scop.inpg.fr

Bruno Agard

CIRRELT, Département de Mathématiques et Génie Industriel
Ecole Polytechnique de Montréal

Canada
bruno.agard@polymtl.ca

Bernard Penz

G-SCOP, Grenoble INP -- CNRS -- UJF
France

bernard.penz@g-scop.inpg.fr

ABSTRACT
When designing a new product family, designers and
manufacturers have to define both the product
structure and its supply chain simultaneously. This
leads to a complex optimization problem to solve in
order to satisfy diversified customer requirements
involving various options and variants. Furthermore,
we must know the bill of materials for each product
to evaluate production and transportation costs,
which means that rapid methods for building bills of
material are crucial. Our paper addresses this
problem, which consists in selecting a set of modules
to be manufactured at distant facilities and shipped
to a nearby plant for a final assembly operation
within a specified amount of time. The objective is a
set of modules capable of defining the bill of
materials for each finished product which will
minimize production costs. Two fast heuristics are
proposed to solve it. Experiments on small instances
enable us to compare our results with optimal
solutions, and experiments on larger instances
enable us to compare the performance of the two
heuristics.

KEYWORDS
Product family design, bill of materials, integer
programming, heuristic

1. INTRODUCTION
Nowadays, the growing demand for customized
products involves an increasing number of product
variants and options, and, consequently, a complex

product diversity to manage. This variety must be
controlled in terms of product, process, and supply
chain costs, as well as customer lead time. Moreover,
when designing a new product family, a consistent
approach is necessary in order to quickly define a set
of variants and the relevant supply chain with a view
to ensuring customer satisfaction and minimizing the
total investment and operating costs of the global
supply chain (Lamothe, J. et al., 2006).

A product family is composed of similar products
which differ in some characteristics, such as options.
For example, a basic car model may offer only a few
options in order to minimize the base price. Options
can then be added to this basic model, like air-
conditioning, an automatic gear box, a diesel engine,
and so on.

There are two extreme production strategies that a
company can use to achieve this. The first is to stock
all the various products, which involves selecting a
minimum set of standardized products (Briant, O.,
Naddef, D., 2004), which could include
supplementary options to meet diverse customer
requirements. However, a product may contain
options which are not required by the customer. The
second strategy is to produce only when an order is
received. In this case, the lead time may be higher,
resulting in a failure to satisfy the customer. An
intermediate strategy would be to manufacture pre-
assembly components, called modules, for stock and
then assemble them when an order is received. The
advantage of such a strategy is to reduce the lead
time and to permit broad product diversity for
customers at limited cost to the company.

bragar
Zone de texte
38th International Conference on Computers and Industrial Engineering - 38CIE, Beijing, China, Oct. 31 - Nov. 2, 2008.

In this paper, we explore a production policy in
which modules are manufactured at distant facilities
to minimize costs. Those modules are then shipped
and assembled at a nearby facility in order to ensure
a short lead time for the customer. We present two
heuristic strategies to define the bill of materials of
each finished product: (1) look at the finished
product set and determine the most suitable bill of
materials for each product; and (2) look at the
module set and select the components of most
interest, inserting them into the bill of materials of
compatible finished products.

This work will be helpful for exploring further
research on the module assignment problem. In fact,
rapidly determining the bill of materials for the
product family will make it possible to investigate
various procedures to influence what modules are
stored at the distant facility. This is achieved either
by improving the current heuristics in order to take
into account the assignment constraints, or by
introducing new, specific heuristics which take the
resulting modules and assign them to minimize
logistical costs.

The literature proposes various approaches to the
design of product families. Some product design
methodologies focus on product architecture
(Dahmus, J. B. et al., 2001; Jiao, J. and Tseng, M.,
1999). This approach is supported to advantage by
modular design (Hung, C. C., Kusiak, A., 1998),
component/product/process standardization (Kota, S.
et al., 2000; Lee, H. L., Tang, C. S., 1997;
Thonemann, U. W., Brandeau, M., 2000). Other
methodologies concentrate on process
standardization (Lee, H. L., Tang, C. S., 1997),
process resequencing (Lee, H. L., 1996), or generic
assembly routing (Gupta, S., Krishnan, V., 1998; He,
D. W., Kusiak, A., 1997).

In all this work, product, process, and supply chain
designs are integrated two by two. However, some
recent work explores a global design modeling
approach. Agard, B. et al., (2006), for example,
propose a genetic algorithm to minimize the mean
finished product assembly times for a given demand.
Agard, B. and Penz, B. (2007) propose a model for
minimizing module production costs and a solution
approach based on simulated annealing. Lamothe, J.
et al., (2006) use a generic bill of materials
representation in order to identify the best bill of
materials for each product and the optimal structure
of the associated supply chain simultaneously.

In section 2, a more detailed description of the
problem is given and an Integer Linear Program
model is proposed. Section 3 is devoted to the
description of the two heuristic strategies. Some
computational experiments are presented and
analyzed in section 4. Finally, concluding remarks
and perspectives are provided in section 5.

2. THE PROBLEM
Consider the following industrial context: a producer
receives customer orders for finished products
containing options and variants. Each individual
product is then manufactured from a set of modules,
the components which come from a number of
suppliers (El Hadj Khalaf, R. et al., 2008).

Consider now that the producer has only a short time
(T) in which to respond to customer demands, and
this is less than the time required to assemble
products from elementary components. In addition to
this, the producer has to provide the product
precisely according to customer demands (without
extra options). This constraint comes from technical
considerations, or is simply a means to avoid
supplementary costs.

To satisfy the customers, the producer brings in pre-
assembled components, called modules, from many
suppliers located at facilities around the world whose
production costs are low. The modules are then
assembled at the producer’s facility, which is
assumed to be close to the customers, and so be able
to react very quickly and offer a reduced lead time.
Our problem is to define a bill of materials for each
finished product which will minimize total assembly
costs.

The problem is based on the assumption that a
product or a module is considered to embody the set
of functions that represents the requirements of the
customer, so we assume that:

• a function Fk, is a requirement that must be
met by the finished product;

• a module Mj is an assembly of functions that
could be added to other modules to make up
a finished product;

• a finished product Pi is an assembly of
modules that corresponds exactly to at least
one customer demand.

Let us introduce the following notations:

• F = {F1,...,Fq}: a set of q functions which can
appear in both finished products and
modules.

• P = {P1,...,Pn}: a set of n possible finished
products which may be demanded by at least
one customer. We note Di is the estimated
demand of the product Pi during the life
cycle of the product family.

• M = {M1,...,Mm}: a set of m possible
modules.

• CFj: the fixed cost to management of module
Mj at the nearby facility.

• CVj: the variable cost of assembly of module
Mj at the nearby facility.

• wj: the time required to assemble module Mj
in a finished product (which is fixed to 1
time unit for all modules).

• T: the time available to assemble a finished
product from the modules.

• WhPi, WhMj: the weights of product Pi and
module Mj respectively (which represent the
number of existing functions in a product or
module).

Under these assumptions, a product (or module) can
be represented by a binary vector of size q. Each
element shows whether the corresponding function is
required in the product (value = 1) or not (value = 0).

The set M contains m modules. These may consist of
either a selection of the modules defined at the
engineering stage, or of the modules resulted from all
the possible combinations of the function set.

The problem now is to determine the subset M’'∈ M,
of minimum cost, such that all products in P can be
built in a constrained time window T with elements
from M'. Concerning the products, the goal is to
determine which bill of materials is the most suitable
(Figure 1).

The following model uses an Integer Linear Program
formulation. Our objective is to minimize the costs
associated with the producer activity. These costs are
as follows: fixed costs related to module
management at the nearby facility and module
assembly costs at the nearby facility.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∑ ∑∑

= ==

m

j

n

i
ijij

m

j
jj XDCVYCF

1 11
) (min

s.t.

{ }niPiAXi ,...,1 ∈∀= (1)

{ } ,...,1
1

niTXw
m

j
ijj ∈∀≤∑

=

 (2)

{ } { }mjniYX jij ,...,1 ,...,1 ∈∀∈∀≤ (3)

{ } { } { }mjniXY ijj ,...,1 ,...,1 1,0, ∈∀∈∀∈ (4)

where Xij = 1, if module Mj is used in the bill of
materials of product Pi, 0 otherwise; Yj = 1, if module
Mj is selected (belongs to M', the set of produced
modules), 0 otherwise; A is the binary matrix,
column j of which is the vector Mj; Xj is the column
vector composed of the variables Xij.

The objective function minimizes the costs incurred

at the nearby facility, where ∑
=

n

i
iji XD

1
) (is the total

need of module Mj.

Constraint (1) shows that a finished product Pi must
be assembled precisely according to customer
requirements. Constraint (2) indicates that products
must be assembled within the time window T in
order to respect the delivery time. Constraint (3)
translates the relation between the Xij and Yj
variables. If a module is used in the bill of materials
of some products, then it belongs to M'.

The problem described here involves the set-
partitioning problem, which enables us to conclude
that it is NP-hard in the strong sense of the term
(Garey, M.R. and Johnson, D. S., 1979).

3. HEURISTIC DESCRIPTION

3.1. The product-building heuristic
(PBH)

The main idea behind this heuristic is to assign an
index to each module. The value of the index is high
when the module is attractive, i.e. the module can be

Figure 1 Alternative bills of materials

P1

10101

M1 M2

10100

F1 F3 F5

00001

P1

M3 M4

F1 F3 F5

10000

10101

00101

included in many products and its cost is low. Then,
we determine the bill of materials of the products one
by one (by solving the MIP), in such a way as to
maximize the sum of the indices of a product’s
components. At this point, the problem described
above is solved at each iteration, but for one finished
product at a time.

The indices are as follows:

)(3)(2)(1 jjjj WhMFCVFCFFCoef ++= where:

∑
=

==
m

j

j

j
j

m
CFCF

CF
CFCFF

1
 with 100)(1

∑
∑

∑
=

=

↔ ==
m

j

j

i

ji
ij

m
CVCV

DCV

DCV
CVjF

1
n

1i

 with

100)(2

and ji ↔ means that product Pi is compatible with
module Mj (Mj does not contain a function which
does not exist in Pi). In this case, the term ∑

↔ ji
iD

represents the needs of module Mj if it is used in the
remaining compatible products at iteration k.

As soon as a module is compatible with the finished
products, F2 becomes bigger, and so this index
favors modules which are compatible with many
finished products.

Two different functions F3 are used:

⎥⎥
⎤

⎢⎢
⎡≤=
T
qWhMWhMF jj if 100)(31 , 0 otherwise.

This function favors small modules, which is
necessary when the cost configuration is such that the
total fixed costs are higher than the total variable
costs. In such a case, it is better to select small
modules because they are compatible with many
more products, and using them leads to a solution
with a small number of modules. This reduces the
fixed costs, which represent the greater part of the
objective function (El Hadj Khalaf, R. et al., 2008).

WhPWhMWhMF jj ≥= if 100)(32 , 0 otherwise,

with ∑
=

=
n

i

i

n
WhPWhP

1
.

This function favors relatively large modules, which
is necessary when the cost configuration is such that
the total variable costs are higher than the total fixed

costs. In such a case, using large modules makes it
possible to have a small value of requirements
(because large modules are not compatible with
many finished products). This reduces the total
variable costs, which represent the greater part of the
objective function.

Since the ratio between fixed and variable costs is
not known in advance, this heuristic is tested with
both functions F3. Moreover, to improve this
heuristic, finished products are sorted by increasing
(and decreasing) order of their weights.

3.2. The module-selecting heuristic
(MSH)

This heuristic is quite simple, the idea behind it being
to select the module having the smallest value of

∑
↔

+
ji

ijj DCVCF and insert it into the bill of

materials of compatible finished products.

To improve this heuristic, we first determine, at each
iteration k, the ideal weight of the module to be

selected by the formula ⎥
⎥

⎤
⎢
⎢

⎡
= ∑

i ik

ik

k
k

W
WhP

n
Wh 1

 with

WhPik the weight of the remaining functions of
product Pi at iteration k which are not yet covered,
and with Wik = T - W0ik, where W0ik is the number of
modules inserted into the bill of materials of product
Pi up to iteration k, and nk is the number of remaining
products at iteration k (those that still have an
incomplete bill of materials).

This operation is aimed at avoiding the selection of
unitary modules (those with a weight of 1) at the
beginning, which has been proved to damage the
quality of the solution: if unitary modules are
selected and T is small, then, at certain iterations
(when T-1 modules have been inserted in previous
iterations), it is necessary to complete the bill of
materials for products having WhPi > T with a large
module which is not necessarily compatible with
other products. If T is small, then selecting unitary
modules at early iterations leads to a solution which
contains many modules, because many of them are
large and they are used in only one or two bills of
materials. Such solutions generate very high fixed
costs, and consequently a larger objective function.

So, we can summarize this heuristic as follows at
iteration k (note that Pik are the remaining functions
of product Pi that are not covered by the modules
inserted in its bill of materials before iteration k):

1. Calculate the ideal weight Whk of the module
to be selected, with WhP i1 = WhPi and n1 =
n, and Wi1 = T and Pi1 = Pi

2. Select the module Mj, the weight of which is
equal to Whk having the smallest value of

∑
↔

+
ji

ijj DCVCF (i represents the products

Pik compatible with Mj).

3. Insert the module selected into the bill of
materials of compatible finished products.

4. For these compatible products, update the
product code: Pik = Pi(k-1) – Mj

5. Also, update Wik = Wi(k-1) -1, which
represents the maximum number of modules
that can be inserted into product Pik.

6. For products having Wik = 1, complete their
bill of materials with the only compatible
module.

7. Repeat these steps until all the bills of
materials have been constructed.

4. COMPUTATIONAL EXPERIMENTS

4.1. Datasets and experimental
conditions

Ten randomly generated small instances for five
different sizes are used; { }13,12 ,11 ,10 ,8∈q on
which the module set, the finished product set, the
demand Di, the assembly operating times wj, the
minimum number of functions per product Minf, and
the maximum number of functions per product Maxf
were fixed. Table (1) summarizes the various
parameters for each instance size.

The demand Di of a product Pi is a decreasing
function on the product function number. This means
that, as soon as the finished product contains more
options, then the demand for it becomes less than if it
had only a few options. The assembly operating
times wj were fixed to 1, so that constraint (2) results

in a limitation on the number of modules in a bill of
materials.

In order to simplify the problem data, the following
rules are imposed on the various costs:

• ()()1λα += jj qfCF

• ()()2λβ += jj qfCV

where qj is the number of existing functions in
module Mj; f is the square-root
function jj qqf =)(, this function representing the
relation between costs and qj better than the identity
and square functions (El Hadj Khalaf, R. et al.,
2008); α, β are coefficients used to scan different cost
configurations; and λ1, λ2 are jamming factors.

For each instance size, three cost files are generated
by the method described above. The aim is to scan
different cases of the ratio between fixed and variable
costs.

Table 2 gives the values assigned to α and β for each
cost. For cost 1, the fixed costs predominate over the
variable costs, while for cost 2, the two costs are
almost equivalent, and for cost 3, the variable costs
predominate.

 Also, %12,%8 21 ≤≤ λλ . For the tests, T was
varied from Minf to Maxf. The heuristics were then
tested on all instances and all costs. Finally, the mean
of the ten instance objective values was recorded for
the comparison analyses.

4.2. Result analyses
The first objective was to compare the heuristic
results with optimal solutions. The heuristics were
tested on an instance of size eight (q = 8), for which
the optimal solutions are known (El Hadj Khalaf, R.
et al., 2008). Table 3 shows the gap rate between the
heuristic results and the optimal solutions for the
three cost structures.

q 8 10 11 12 13

m 255 1023 2047 4095 8191

n 30 40 60 80 100

Minf 3 3 3 4 4

Maxf 6 7 8 8 9

Table 1 Instance parameters

Cost 1 2 3

α 1000 240 100

β 0.10 0.40 0.50

Table 2 Cost Configurations

A first reading of these results shows that the MSH
heuristic is better than the PBH one. However, it can
be noted that both heuristics run well for medium and
high values of T, and especially for cost 2 and cost 3,
that is, when fixed assembly costs are not greater
than the variable assembly costs. This indicates that
these heuristics optimize variable costs well.

Our second objective was to test the two heuristics
on relatively large instances, in order to compare
their performance for larger problems. We achieved
this with the tests on sizes 10, 11, 12, and 13.

Figures 2, 3, and 4 show the gap rate (as a
percentage) between the results of the product-
building heuristic and the module -selecting heuristic
(the objective MSH value is considered as the
reference value).

These figures confirm the result obtained for q=8,
which is that the MSH is much better than the PBH,
and this is true for all sizes, delays, and costs. Also
note that the gap rate increases as the problem size
increases. In such a case, the gap rate for q=13 is
generally greater than the gap rate for q=12, and so
on.

Furthermore, the gap rates are generally larger for
cost 1 than for cost 2, and for cost 2 than for cost 3.
This indicates that the MSH optimizes fixed costs
more efficiently than the PBH.

Finally, Figure 5 shows the computational time of the
PBH for q=13. This figure indicates that the PBH is
much more time-consuming than the MSH, which
takes an average of one second per instance for all
sizes (which is very quick). Now, the PBH needs
more computational time as the size of the problem
increases (an average of 200 seconds for q=12). This
is expected because: (1) the PBH tests two indicators
with two sorting methods (four combinations), and
especially because (2) it uses Cplex to determine the

T 3 4 5 6

PBH 54% 28% 8% 0%

C
os

t 1

MSH 29% 9% 11.5% 0%

PBH 35% 19% 7% 0%

C
os

t 2

MSH 15% 2.2% 2.4% 0%

PBH 25% 16% 12% 7%

C
os

t 3

MSH 9% 2.8% 4.3% 7%

Table 3 Gap rate between heuristic results and optimal
solutions for q = 8

-10

0

10

20

30

40

50

60

70

3 4 5 6 7 8 9

T

ga
p

ra
te

q=10
q=11
q=12
q=13

Figure 2 Gap rate between PBH & MSH for cost 1

0

5

10

15

20

25

30

35

3 4 5 6 7 8 9

T

ga
p

ra
te

q=10
q=11
q=12
q=13

Figure 3 Gap rate between PBH & MSH for cost 2

0

5

10

15

20

25

3 4 5 6 7 8 9

T

ga
p

ra
te

q=10
q=11
q=12
q=13

Figure 4 Gap rate between PBH & MSH for cost 3

product bill of materials, which requires much more
time.

Finally, Table 4 shows the gap rate (as a percentage)
between the MSH results and the problem’s linear
relaxation results for each problem size, cost file, and
delivery time.

This shows that the gap rate is quite reasonable for
medium and large values of T, possibly reaching 0%
in some cases (when T = Maxf). However, for small
values of T, it becomes huge. With small values of T,
finding an optimal bill of materials for each product
is much more difficult, because of constraint (2). It
takes much more time for Cplex to reach the optimal
solution.

Again, the gap rate is greater (for small delays) for
cost 1 than it is for the other costs. We can hope that
the MSH will provide relatively good solutions for
cost configurations on which fixed assembly costs do
not predominate over variable assembly costs.

5. CONCLUSION
This paper has been devoted to a difficult industrial
problem which arises when companies try to offer a
large variety of products to consumers. In this
problem, the process of selection of components
(modules) has to be efficient. The modules are
produced for stock and used at the final stage of
production, which is on the assembly line. Several
authors have considered this problem based on
different assumptions: for example, a function can
appear twice in a final product, or a final product can
be substituted by another one containing more
functions - but few papers consider the problem in

which a final product must correspond exactly to the
product ordered by the customer.

We have focused on the assembly operation and tried
to determine an efficient set of modules which would
allow all products to be assembled, while at the same
time avoiding function redundancy and respecting
the delivery time. The objective function consists in
optimizing the costs incurred during the production
activity.

Two heuristics were analyzed: the first determining
the bill of materials of finished products one by one,
by fixing attractive indices for each module; and the
other determining the ideal module verifying the
selection criteria and inserting that module into the
bill of materials of compatible finished products.

Next to computational speed, the MSH strategy is
revealed by the tests to be the one that gives by far
the best results. This can be explained by the
difficulty in finding good module indices, and
especially by the problem structure, in which
solutions must take into account the interactions
between finished products. This constraint makes it
very difficult to determine one product’s bill of
materials independently of those of other products.

1100
1150
1200

1250
1300
1350
1400

1450
1500
1550

4 5 6 7 8 9

T

Ti
m

e
(s

ec
.)

cost 1
cost2
cost 3

Figure 5 Computational time of the PBH for q = 13

 T

q Cost 3 4 5 6 7 8 9

1 130 65 28 17 0

2 65 24 8 4 1.4

10

3 36 16.7 12.8 15.7 19.4

1 197 105 39 19 11 0

2 89 33.7 12 6.4 5.9 6

11

3 47 22.6 16.3 17.9 22.7 26.9

1 141 73 24.4 15.1 0

2 44.8 18.4 9.3 9.3 11.5

12

3 28.5 19.8 21 25.4 33.8

1 202 110 31.3 20.4 16.5 0

2 64.2 27.2 11.8 10.3 11.2 15.1

13

3 36.1 23.4 22.2 25.8 30.6 38.8

Table 4 Gap rate between MSH results and linear
relaxation results

Finally, the MSH results encourage us to use this
heuristic as an initial solution for a metaheuristic
resolution in the future. It would also be interesting
to improve this heuristic to take into account the
logistical chain phase.

REFERENCES
Agard, B., Cheung, B., da Cunha, C., (2006), “ Selection

of a module stock composition using genetic
algorithm”, in 12th IFAC Symposium on Information
Control Problems in Manufacturing – INCOM, Saint-
Etienne, France, May 17 – 19.

Agard, B., Penz, B., (2007), “A simulated annealing
method based on a clustering approach to determine
bills of materials for a large product family”, personal
communication.

Briant, O., Naddef, D., (2004), “The optimal diversity
management problem”, Operations Research, Vol 52-
4, pp. 515-526.

Dahmus, J. B., Gonzalez-Zugasti, J. P., Otto, K., (2001),
“Modular product architecture”, Design studies, Vol
22, pp 409-424.

Davis, E. W., (1992), “Global outsourcing: have U.S.
managers thrown the baby out with the bath water?”,
Business Horizons, pp 58-65.

Garey, M. R., Johnson, D. S., (1979), “Computers and
intractability. A guide to the theory of NP-
completeness”, pp 210, Freeman , Oxford, UK.

Gupta, S., Krishnan, V.,(1998), “Product family-based
assembly sequence design methodology”, IIE
Transactions, Vol. 30, pp 933-945.

El Hadj Khalaf, R., Agard, B., Penz, B., (2008), “Product
and supply chain design using a two-phases
optimization approach”, International Conference on
Information Systems, Logistics and Supply Chain,
Madison, USA, May 27-30.

He, D. W., Kusiak, A., (1997), “Design of assembly
systems for modular products”, IEEE Transactions on
Robotics and Automation, Vol. 13-5, pp. 646-655.

Hung, C. C., Kusiak, A., (1998), “Modularity in design of
products and systems”, IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans,
Vol. 28-1, pp. 66-77.

Jiao, J., Tseng, M., (1999), “A methodology of developing
product family architecture for mass customization”,
Journal of Intelligent Manufacturing, Vol. 10, pp. 3-20.

Kota, S., Sethuraman, K., and Miller, R., (2000), “A
metric for evaluating design commonality in product
families”, Journal of Mechanical Design, Vol. 122, pp.
403-410.

Lamothe, J., Hadj-Hamou, K., Aldanondo, M., (2006),
“An optimization model for selecting a product family
and designing its supply chain”, European Journal of
Operational Research, Vol. 169, pp. 1030-1047.

Lee, H. L., (1995), “Product universality and design for
supply chain management”, Production Planning and
Control, Vol. 6-3, pp. 270-277.

Lee, H. L., (1996), “Effective inventory and service
management through product and process redesign”,
Operations Research, Vol. 44-1, pp. 151-159.

Lee, H. L., Billington, C., (1992), “Managing supply chain
inventory: Pitfalls and opportunities”, Sloan
Management Review, Vol. 33-3, pp. 65-73.

Lee, H. L., Tang, C. S., (1997), “Modelling the costs and
benefits of delayed product differentiation”,
Management Science, Vol. 43-1, pp. 40-53.

Van Roy, T., (1986), “Cross decomposition algorithm for
capacity facility location”, Operations Research, Vol.
34, pp. 145-163.

Pine B. J., (1993), “II. Mass Customization: The new
Frontier in Business Competition”, Harvard Business
School Press, Boston.

Thonemann, U. W., Brandeau, M. (2000), “Optimal
commonality in component design”, Operations
Research, Vol. 48-1, pp. 1-19.

