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Abstract 
An assemble-to-order policy delays the final assembly operations of a product until a customer order is 
received. The quality of the final product is determined by the quality of the assembly operations. The data-
mining approach presented in this paper uses information extracted from production history to determine the 
sequence of assemblies that minimize the risk of producing faulty products. The extracted knowledge plays 
important role in sequencing modules and forming product families that minimize the cost of non-quality. The 
concepts introduced in the paper are illustrated with numerical results.  
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1 INTRODUCTION 
Faulty products lead to unnecessary expense due to 
rework, repairing, recycling, and wasted time. “Zero fault” is 
an objective that industries are eager to reach. A variety of 
methods aim to achieve such goal, e.g., six sigma [1, 2] 
and total productive maintenance (TPM) [3]. Analysis of 
past performance of production systems is necessary. The 
difficulty is in finding pertinent information as the data is 
stored in numerous forms and at different locations. Data 
mining aims at extracting knowledge from large data sets. 
Using this new approach for improvement of production 
quality is quite natural. The goal of this paper is to 
emphasize the role of knowledge extraction in 
manufacturing quality in an assemble-to-order (ATO) 
context.  
This paper is structured following six sections. First the 
background of the study is provided. Then the information 
use in assembly sequencing is addressed. The 
methodology used is described in Section 4. The paper 
concludes with computational results. 

2 APPLICATION CONTEXT 

2.1 Diversity: An industrial example 
To meet the customers’ needs, product diversity tends to 
grow and therefore a management strategy is needed. The 
cost of offering a large portfolio should not exceed the 
gains obtained by satisfying the wide range of customer 
needs [4]. It is then essential to find the level of diversity 
that minimizes the total cost (Figure 1). 
Diverse strategies could be considered in designing a 
product line. The major issue is to be able to offer large 
product diversity while managing a limited diversity of 
components, operations, and packaging. Different 
approaches have been used to address this challenge, 
e.g., design of product families, modular design and 
product delayed differentiation. Assemble-to-order is a 
policy that links modular design and product delayed 
differentiation. Indeed with this policy, modules are built 
from basic parts and stocked, the final assembly is done 
after an order has been confirmed. 
The large apparent diversity for the customers is enabled 
by a combinatorial association of basic parts. 

Figure 1: Diversity costs (Tarondeau [5]). 

Surprisingly, the major part of diversity is not visible to the 
customers. It is actually created by the evolution of 
components (changes in technology) or the creation of new 
versions (upgrades). 
In this paper, an industrial example of the electrical wire 
harness is discussed. This product possesses many of the 
previously described characteristics. Indeed, it is a major 
component of a vehicle. This set of wires and connectors 
transmits electricity and information between different 
devices all over the car (see Figure 2). 
The functions (airbag, electrical windows, headlights’ 
control, etc.) are performed by combination of different 
wires and connectors. To illustrate the diversity of this 
product, consider a standard wire harness in a middle 
range car. This wire harness performs 15 different 
functions. Depending on the silhouette and the motor, 
these functions appear in different versions (up to 9). 
Potential diversity is then about 7 millions of different wire 
harnesses for a unique car model [6]. 
In addition, there are inclusive and exclusive relations 
between the functions, e.g., the function “passenger air-
bag” requires the function “driver air-bag”. Those relations 
reduce the actual diversity. 
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Figure 2: Wire harnesses in a car. 

2.2 Costs 
Evaluating the diversity cost is a problematic task. Even if 
direct costs, like investment in new equipment or material 
costs, can be measured, indirect costs are difficult to 
estimate. Martin and Ishii [7] proposed metrics to compare 
design alternatives based on the costs they induce, 
however this evaluation is difficult to perform for industrial 
cases. 
Product quality can be impacted by its complexity. As the 
workers have to perform more tasks, the number of errors 
may increase. The negative impact of product complexity 
seems unavoidable, unless the diversity is controlled. 
McDuffie et al. [8] presented results of an international 
study in automotive industry. This statistical study stressed 
the relationship between product diversity, productivity, and 
quality. This analysis indicates that when plants are 
adequately equipped to manage diversity, the scope of the 
product mix does not have a large impact on the 
productivity.  
Similar to the diversity cost, which is difficult to evaluate, 
savings due to process redesign are not easy to quantify. 
Actually, there are criteria (e.g., reduction of the time-to-
market or flexibility improvement) for which a non-
qualitative evaluation is not recommended. Furthermore, if 
cost savings due to quality improvements can be partially 
measured, in terms of reduction of the mean assembly 
time, reduction of needed materials, the savings (or even 
gains) due to the improvement of the products’ image for 
the customers can not be directly evaluated. 

2.3 Diversity management: Modularity and ATO 
A postponement strategy aims at reducing the risk 
associated with product diversity. It uses similarity between 
objects to delay their differentiation [9, 10].  
The modularity concept has been used in different areas to 
manage diversity. Modular production is defined by the 
APICS as the capacity to design and product sets of 
modules that can be combined in a maximal numbers of 
ways [11]. 
The choice of a modular design implies a rethinking about 
the design process within the company [12]. The modules 
created can be independent or not (i.e., they can be 
assembled without requiring another module or not). Figure 
3 illustrates this concept. Actually Figure 3 (a) shows 
modules that are independent: modules 1 and 3 can not be 
assembled unless module 2 is already installed. On the 
contrary the connections of the modules described in 

Figure 3 (b) are such that any module can be assembled 
with any other one. 

(a)
(b)

Figure 3: Example of modules compatibility. 

One of the advantages of having independent components 
is that re-sequencing of the assembly sequence can be 
done without having to re-design the different modules. 
The example considered in Section 5 is constituted by 
independent modules. 

3 QUALITY ANALYSIS 

3.1 Fault identification 
The links between information system, control system and 
management control exist irrespective of production policy. 
Nevertheless, the lack of previsions (workload, production 
volume, etc.) induced by the awaiting of the customers’ real 
demand endangers the relations between production and 
control. Performances have to be measured ex-post. The 
role of the control system is then to analyze the causes of 
non-respect of the performances, the objective being to 
improve them by modifying the existent organization.  
A product is considered as non-quality when its 
characteristics do not meet the specifications defined by 
the designers. 
A necessary first step is to identify the non-quality. This 
can be done at the end of the assembly process. Redoing 
the finished product will have an adverse economic effect.  
If inspection was carried throughout the assembly process, 
non-quality would be detected sooner. Thus, the rework 
cost would decrease. 
Nevertheless, inspection is expensive and it may not be 
possible to test the product after each assembly operation. 
It is then essential to carefully determine the location and 
timing of tests.  

3.2 Data mining applications   
Anand and Büchner [13] defined data mining as the 
discovery of non-trivial, implicit, previously unknown, and 
potentially useful and understandable patterns from large 
data sets. Data-mining algorithms have been applied in 
many different areas such as marketing [14], medicine 
(identification of genes impacting cure/drug development 
[15]), and industrial design [16]. 

The patterns extracted from production data can assist 
production managers following the assemble-to-order 
principle. 
However, the difficulty is to find a data representation that 
enables identifying interesting patterns. This representation 
should also be understandable for the data miner and the 
field expert, so that the results could be interpreted. 
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4 GOAL AND METHODS 
The main goal of this study is to apply data mining to 
improve production quality in an assembly line. The 
challenge is in the extraction of associations between non-
quality and assembly sequence in presence of noise. 
Actually, non-quality may come from sources other than 
the operation sequence, for example, power outage or non-
quality of raw material. Furthermore, random phenomena 
can also be responsible of fault. 

When faulty patterns are identified, it becomes then 
possible to re-sequence the assembly operation or to 
rethink the tests’ policy [17] in order to reduce the number 
of operations to be redone. It is therefore important to keep 
in mind that operations of rework are more complicated 
(i.e. they last longer and cost more) when they applied on a 
more complex product. 
The method used is described in the following steps: 

1. Identification of assembly sequences having an 
impact on quality 

2. Generation of a new sequence 
3. Generation of a new test policy 

5 COMPUTATIONAL RESULTS 

5.1 Methodology 
The data-mining approach to be used in this research was 
prototyped on a randomly generated data set. The data 
was randomly generated with respect to the following 
constraints:  

 An operation can be performed as a normal task 
(i.e., non-rework task) at most once per product 

6;1,6;1 kji
)kj()itaskanditask( kj

 To reproduce the behavior of a real production 
system, random faults are generated. Because of 
a randomly phenomenon, 5% of the products 
need rework. When the first test proved the 
product to be non-quality, rework has to be done.  

 Moreover the rework operation can be not 
sufficient to reach the quality characteristics; in 
this case the product will be considered as faulty 
and destroyed. 

Furthermore, systematic faulty sequences are considered. 
The challenge of the data mining process will be to extract 
those patterns. 
The two always faulty operation sequences are: 

 If operation 5 is not the last task, this operation 
has to be redone 

 If operation 2 precedes operation 4, operation 4 
has to be redone 

5.2 Input data 
Consider here a unique example, which consists of 6 
assembly operations. This instance includes 2500001

product’s operation routes. The data store in the production 
history records are the operations’ sequence. It encloses 
assembly operations as well as quality tests. Depending on 
the results of those tests some assembly operations could 
have to be redone. 

An example of a product route would be: 
5-4-2-1-6-Tf-4-Tok 

This route (represented by Figure 4) tells us that this 
product after assembly operations 5-4-2-1-6 was detected 
                                                          
1 TANAGRA’s limit (see Section 5.3).

as faulty (Tf). It was then necessary to redo assembly task 
4 (4). The final test proved the product to conform to quality 
standards (Tok). 

Figure 4: Example of a product route. 

The historical data is represented in a tabular form, where 
each row represents the route of a product. An example of 
such a route is stored as the first row (in bold) of Table 1. 

Table 1: Input data. 
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1 4 5    Tok   
6 2 5 3   Tf 5 Tok 
2 1 4    Tok   
2 4     Tf 4 Tok 

The first 6 columns in Table 1 represent different assembly 
operations needed for the product. The sequence of the 
operations is indicated by the sequence of columns’. 
Column 7 represents the status of the first quality test, 
column 8 the possible rework operation and the last 
column the final quality status of the product.  

5.3 Data mining implementation 
The freeware TANAGRA2 software was chosen as the 
knowledge extraction tool. Agrawal’s [18] algorithm was 
used to find the association rules. The cross-tabulation 
parameters describe the contingence of variable pairs; 
obtained following Agresti’s method [19].  
One of the challenges of data mining is to manage the 
difficulty of handling different types of data [20].  
Here the difficulty was to find a technique to identify the 
sequences causing non-quality. Therefore, the structure of 
the input data has to be modified. The frequency of faulty 
products being low, the support of the rules can be rather 
low too. Therefore it can be interesting to study two sets of 
data: one with all routes and one describing only faulty 
products’ routes. The first set allows identifying sequences 
conducting to quality products and the second to 
understand the reasons of faults. The data of Table 1 are 
then separated in two tables (Table 2 and Table 3). 

                                                          
2 http://eric.univ-lyon2.fr/~ricco/tanagra/index.html 



Table 2: Quality products. 
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Patterns extracted from Table 2 could be used to improve 
the motivation of the assembly line workers. For example, if 
an operation never needs a rework, the workers performing 
it could be awarded.  
Nevertheless, this article focused on the identification of 
non-quality patterns. Therefore in the following section 
Table 3 will be considered for further analysis. 

Table 3: Faulty products. 
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Sequences such as: 1-4-2 and 4-2-5 should be recognized 
for sharing a sub-sequence of 2 operations. This 
recognition is not possible when dealing directly with the 
data presented as in Table 1, Table 2 or Table 3.  
To perform this identification, a different structure for the 
routes is required.  
The example sequence 5-4-2-1-6-Tf-4-Tok represented in 
the first line of Table 3, is then represented by the set {B5, 
5_4, 4_2, 2_1, 1_6, 6F, R4}. The precedence information 
is contained in the data itself. The routes can then be 
encoded as binaries data. Table 4 represents the same 
information as in Table 3. Column B1 states that operation 
1 is the first task (beginning of the assembly process), 
respectively column B5 states that operation 5 is the first 
task. Column 1F states that operation 1 is the final task. 
The latest column rework represents the rework 
operations, when the product is: R4 states that operation 4 
has to be redone. 
Note that the fact that the first test indicates that the 
product is faulty, is included in the route in Table 4 
containing faulty products routes.  

Table 4: New form of faulty product routes.
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A post-processing of the extracted rules is required to 
eliminate redundancies. Furthermore, as the quality of 
process is of interest, only the rules with the “test” as an 
outcome were considered. 
It is common in data mining that human expertise is 
needed to assess and validate the extracted knowledge.  
The latter is possible due to the world knowledge [21] 
acquired through experience. Thus an expert may be able 
to detect rules that can not be used out of context.  
Consider the following two rules: 
Rule a: Any product requiring operation 6 is reworked 
more often than any other product.  
Rule b: Operation 6 never needs rework. 
An expert could interpret these rules using her/his 
perception-based information: The worker performing 
operation 6 is highly skilled; however, he distracts his co-
workers by singing when working. 

5.4 Results: Extracted rules 

Association rules 
Data mining algorithms identify patterns in the data. These 
results validate the representation chosen for the routes in 
Section 5.3. 
The rules extracted have the format shown in Table 5. 
A human expert could make the rules more 
comprehensive, e.g.: 
Rules 2, 3, 4, 5, and 6 have similar meaning: If operation 5 
is not the last task, it needs to be redone. 
Rule 1: If operation 2 precedes operation 4, the product 
has to be reworked.  
Rule 11: If operation 2 is the only operation, it needs to be 
redone. 
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Table 5: Extracted rules. 
No. Antecedent Consequent Support Confidence 

1 "2_4=1" "rework=4" 0,165 0,961 
2 "5_4=1" "rework=5" 0,217 1 
3 "5_1=1" "rework=5" 0,162 0,98 
4 "5_3=1" "rework=5" 0,158 0,979 
5 "B5=1" "rework=5" 0,368 0,948 
6 "5_2=1" "rework=5" 0,185 0,895 
7 "B2=1" "rework=5" 0,195 0,886 
8 "2_4=0" "rework=5" 0,725 0,877 
9 "1F=1" "rework=5" 0,182 0,832 
10 "3F=1" "rework=5" 0,163 0,817 
11 "2F=1" and 

"B2=1" "rework=2" 0,012 1 

The rules with confidence lower than 1 may unveil patterns 
that are not always true. This is important when improving 
the quality of a system not to be limited to the search for 
systematic failures but also to look for sources of non-
quality. Indeed, quality faults often have multiple sources 
and finding the exact cause requires a synthesis of 
information residing at various data bases. “Partial truth” 
may be the source of potential improvements. 

Cross Tabular 
Consider an example where a data miner finds two major 
links between rework operations and the assembly 
operations. The pertinence of the rules was evaluated 
using the Tschuprow's T indicator3 as shown in Table 6. 

Table 6: Summary results. 
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Rework 2_4 0,717  
Rework = 4 and 2_4 = 1 
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Rework 6F 0,657  
Rework = 6 and 6F = 1 
1 occurrence 

Contingence links were found between rework of operation 
4 and the operations sequence operation 2-operation 4. 
This rule validates the associate rule 1 listed in Section 5.1. 
The source of the rework of operation 6 was also clarified 
as operation 6 is performed at the end of the assembly 
line. Nevertheless, this information should be handled 
carefully because of the rare frequency of this event. 

                                                          
3Tschuprow's T varies between 0 and 1, T = 0 states the 
independence (in the mathematical sense) of the 2 
variables, T = 1 states that the link between the variables 
explicates the whole observation.

5.5 Analysis and decisions 
The rules can be used to determine a new sequence of 
assembly operations. For example, Rule 1 indicates re-
sequencing of operations 2 and 4:  
The product requiring operations 2 and 4 should always 
pass through operation 4 first. 
Rules 2, 3, 4, 5, and 6 point to re-sequencing: operation 5 
to be done at last.  
The incorporation of Rule 11 will not lead to re-sequencing 
of operations, however, this operation should be dealt with 
as it often leads to non-quality, e.g., different tools could be 
used.  

Introducing an additional test operation after the second 
task could be considered. Products needing rework would 
be detected sooner and the rework would be less costly. 
Of course, any reorganization of the process has its 
consequences, and to predict them it is not easy. 
Therefore the whole process of data-analysis and system 
reorganization should be on a regular basis to determine 
the best configuration (Figure 5).  

Figure 5: Improvement scheme. 

Furthermore, production data could be temporal, e.g. due 
to seasons. Therefore, it is critical to consider a possible 
link between production quality and time period. 
In order to integrate this characteristic, data, other than 
operations and quality status should be considered, e.g. 
studying the impact of the work shift could lead to a 
redesign of break schedule (e.g. 2 breaks of 15 minutes 
instead of 1 break of 30 minutes). 

6 CONCLUSION 
This paper discussed the application of data mining for 
improvement of manufacturing quality of assembly 
operations. The data considered in this research included 
random events that occur in production systems. The 
computational results confirmed that sources of faults can 
be detected with association rules, even in presence of 
noise. The rules extracted with data-mining algorithms can 
be used to improve production quality. 
The selection of an assemble-to-order policy is not limited 
to technical solutions. Such a change in production policy 
has to be completed with organizational rethinking [22]. 
Further research should consider operation sequences and 
other non-quality sources including human factors and 
material. 
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